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AbstraFI Basicrepresentationsof A$) and @, are smdied. The weight vectors are represented 
in terms of Schur’s Q-functions. The method to get the polynomial solutions to the reduced 
BKP hierarchies is shown to be equivalent to a certain rule io the Maya game, 

Nonlinear integrable systems are important in mathematical physics. Among others the KP 
hierarchy has been deeply studied in various aspects such as representation theory, algebraic 
geometry and two dimensional pv i ty .  In 1981 Date et al introduced a KP-lie hierarchy 
of nonlinear differential equations, which has a symmetry of the infinite dimensional Lie 
algebra Bm = go(00) and called it the KP hierarchy of B type or BKP hierarchy for short 
[ 1.21. Although this hierarchy has nice properties which reflect the Lie algebra symmetry, 
it seems that little research has been made compared with the KP hierarchy. This letter 
is an attempt to give an explicit expression of the weighted homogeneous solutions to the 
r e d u d  BKP hierarchies. 

We first review some ingredients of the BKP hierarchy and affine Lie algebras for the 
following discussions. 

Let &(n E 2) be the neutral free fermion satisfying 

(+In, 4”) = (-l)msm+n,O. (1) 

Note that +; = 1/2. We denote by B = BofBB1 the superalgebra generated by the neutral 
free fermions. Let F = 30 fB 31 = Bolo) fB &IO) (resp. F’ = (OIBo @ (OIB1) be the 
Fock space (resp. dual Fock space), where the vacuum 10) (resp. (01) is defined by 

+“IO) = O(n < 0) (resp. (OI& = O(n > 0)). (2) 

The vacuum expectation value (OlalO)(a E B )  is uniquely determined by~setting (OlllO) = 
1, (Ol+OlO) = 0. 

We construct the realization of F. The normal ordering for the neutral fermions is 
defined by 

: +i+j : = W j  - (Ol+i+jlO). (3) 
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Define the Hamiltonian by 

Let V = C[tl, b, ts, . . .I be a polynomial ring. There is an isomorphism between 30 and 
V, defined by 

a10) + (OleH("nlO) a E 330. (5) 

"It: subspace 

of BO admits a structure of a Lie algebra isomorphic to the one dimensional central extension 
of o(00). The representation of Bw on V is defined by the vertex operator 

which corresponds to the action of : @(p)@(q)  : on Fo, where @ ( p )  = x n E Z @ n p n .  The 
space of the solutions (r-functions) to the BKP hierarchy is obtained as the group orbit 
through 1 E V under this representation. 

We consider the reduction of the BKP hierarchy 131. For a fixed positive integer r, 
r-reduced BKP hierarchy is defined through the specialization of the vertex operator (7) 

q = p w  w'= l  w f l .  (8) 

This specialization is known to be equivalent to restricting the algebra E ,  to the subalgebra 
AE) for r = 21 + 1 ,  and DE\ for r = 21 +2. The representation space will be denoted by V,. 
It should be noted that the situation is different between odd r and even r .  In the r = U+ 1 
case the specialization means the deletion of the variables t,(j = 0 mod r). Hence the 
representation space becomes smaller: V, = C[G; j 2 1, odd and j $ 0  (mod r)]. On 
the other hand, in the r = 21 + 2 case, since the representation space has no variables with 
an even index, the space itself is unchanged: V, = V. 

In order to compute the weight of a given vector, we write down coroots of A$ and 
DEl explicitly by means of the neutrd fermion operators: 

Ag) (r = 21 + 1) 
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DEl (r = 21 + 2) 

a" - C(-l)' : q5n,+&nr-l : . ' -2n6z 

Let 6 = 6, aiai be the fundamen@ imaginary root of the affine Lie algebra, where 
ai are the labels of the corresponding generalized Cartan matrix. For A$) and OFl it reads 
S = 2 x:d cri +CUI and 6 = E:, ai, respectively. 

Finally we recall the basic representation of &ne Lie algebras. The irreducible 
representation with highest weight A0 is called the basic representation, where 

&(U:) = 1 no(@;) = og' # 0). (9) 

The representation on 30 constructed above turns out to be the basic representation L(A0) 
of A$) and D j l  [6]. 

We now consider weight vectors, Q-functions and the Maya game. It is shown in [6] 
that a vector 

(ml, ... m u )  :=&= ...,$,,,, IO) E 30 ( m a  > . . . > ml > 0) (10) 

is a weight vector of the Fock representation of B,. Since A$) and D$ are Lie subalgebms 
of Bm. the vector (10) is also a weight vector of L(A0) of these affine Lie algebras. In 
view of the principally specialized character of L(A0). we have the following proposition. 

Proposition 1. The basic representation L(A0) of A$) (resp. DFl)  has the basis consisting 
of the weight vectors 

{(ml, . . ., m d ;  m u  > ... t ml > 0,mj + 0 (mod ZZ + 1)) (11) 

(resp.{(ml, ..., mm);mz>. . .>ml  >O)). (12) 

Let us turn to the realization V, of the basic representation L(Ao), where r = 21 + 1 
for A$) and r = 21 + 2 for DFl.  We see how each weight vector of L(&) is expressed 
explicitly as a polynomial in V,. To this end we recall Schur's Q-functions 181. Let 
XI, . . . , X,, be indeterminates. The Hall-Littlewood symmetric function indexed by the 
Young diagram Y = (ml , . . . , m,)(m. > . . . > ml 3 0) is defined by 

where q is a parameter, pj = #{ i ;m;  = j }  is the multiplicity of j in Y, ( q ; q ) k  = nf=,(l- q i )  and 6: is the subgroup consisting of permutation w which does not change 
the diagram Y, i.e., mur(i) =mi for 1 6 i 4 n. As a specialization q = -1 we get Schur's 
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Q-function Qy(X1, . . . , X"). It is obvious from (13) that Qy(X1, . . . , X,) = 0 unless Y is 
a strict Young diagram, i.e., pj = 1 for any j > 1. 

The Fmbenius formula gives the relation between &functions and power sum 
symmetric functions pm(Xl,. .. I X,) = X;. +...+ XF: 

Here the summation runs over all Young diagrams Y' = (mi, . . . , mh) consisting of odd 
numbers mis 1(Y') is the number of non-zero mj's, and zy, = njz, j"jvj!, where u j  denotes 
the multiplicity of j in Y'. Although we do not make explicit, x$(-l) is an integer 
computed easily 'from the character table of projective representations of the symmetric 
group en. Introduce new variables = (Z/j)pj(Xl, . . . , X,) for positive odd integers j, so 
that the Q-function turns out to be a weighted homogeneous polynomial off = (f1, t3 ,  . . .): 

Another expression is known for the Q-functions [51. Let Y = (ml,  . . . , mw)(mw z 
. . . ml > 0) be a strict Young diagram, and consider 2d x 2d skew symmetric matrix 
(Q(mj.mj)(t)). Then we have 

Qy(f) Pf(Q(m..mj)(f)) (16) 

where Pf denotes the Haflian. Using anti-commutation relations, it is easily deduced that 

(oleH"'4m4n10) = iQcm,n)(f) (m > n > 0) (17) 

and 

(18) 

Hence every weight vector of the Fock representation of E ,  is expressed by means of a 
single Q-function. 

For a polynomial P ( t )  E V, we denote by P(t') the polynomial in V, obtained from 
P ( t )  by putting $, = 0 for j = 1,2, . . .. Our claim is as follows: 

Proposition 2. The basic representation on V, of Ag) with r = 21 + 1 (resp. DEl with 
r = U +  2) has the basis consisting of weight vectors 

1 
Zd 

(Ole'%mw lo) = --Pf(Q(m;.mj)(O). 

{ Q y ( t ' ) ; Y  =(ml, ..., mw),mw > ... > m l  >O,mj fO (mod21+1)} (19) 

(resp.[Qy(f');Y=(ml ,..., m U ) , m U > . . . > m l  >O}). (20) 

The Maya game is a fermion version of the so called 'Nim' defined as follows [4]. Consider 
infinitely many cells indexed by 2. Each m E 2 is said to be either black or white according 
to whether it is filled with a single particle or is empty. The boundary condition is that 
m(resp. - m) is white (resp. black) for sufficiently large m > 0. The vacuum is a state 
such that m is black for all m < 0 and is white for all m > 0 (figure 1). In the general state 
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Figure 1. Maya @gram of the vacuum state. 

some particles excite and occupy some non-negative numbered cells. The game, played by 
two, is to move a particle in turn to a lower level until one completes the vacuum. A player 
loses the game if he faces stalemate, i.e., the vacuum state. 

To each weight vector (mi, . . . , mu) we associate a state of the Maya game in the 
following manner. Every positive cell mj is filled with a particle excited from the cell 
-mj. There is an ambiguity at the cell indexed 0. We choose the convention that 0 is 
always white. The state of the Maya game such obtained from a weight vector is called a 
symmetric state. 

Figure 2 The symmetric m e  for (1,4) and the corresponding Young diagrams. 

In the language of Young diagrams the relation between symmetric states and weight 
vectors is described as follows. For a weight vector (ml, ..., mu), draw the corresponding 
strict Young diagram Y. Let E' be the shift symmetric Young diagram obtained from Y, 
which is explained in 181. Then the rule that associates a state of Maya game with a Young 
diagram leads to the symmetric state corresponding to (mi, . . . , mu) (cf [4]) (figure 2). We 
remark that the transposed Young diagram 'E' leads to the symmetric state with black 0. 

We now state how to obtain weight vectors of weight A -+S from a given weight vector 
of weight A. The procedure is described by modifying the rule of the Maya game. 

First we consider the case of A$). Suppose a weight vector of weight A is given. Then 
one of the following possible moves is permitted to have weight A - 6. 

(1) Move a black by 21 + 1 to the right. 
(2)  Replace the pair of white cells (k,  21 + 1 - k) by black for 1 < k < E .  

(1) Replace the white E + 1 by black. 
(2)  Move a black at a positive multiple of I + 1 to the right. 
(3) Once the cell n(U + 2)  becomes black for an n > 1, instead of that single black, 

For the case D2i the moves are: 

the black pairs (k ,  n(21 + 2)  - k )  are also permitted for 1 < k c n(2E+ 2). 
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The inverse moves give weight vectors of weight A + 6 from one of weight A. 
Next we characterize the maximal weight vectors of the basic representation L(ho) 

of the affine Lie algebras A$ and DE,  and, as a consequence, obtain the weighted 
homogeneous polynomial solutions to the cones ondin reduced BW hierarchy. 

is not a weight. It is known that the totality of the maximal weights of L(&) is given 
by the Weyl group orbit through the highest weight Ao, and hence each maximal weight 
is of multiplicity 1 [7]. Since the Weyl group can be seen as a subgroup of the 
corresponding to the affine Lie algebra, the maximal weight vectors of L(ho) of A, and 
OFl are polynomial solutions to the (U + 1)-reduced and (U +;?)-reduced BKp hierarchy, 
respectively [31. 

As we have shown previously, for each weight vector in L(&) we can associate a 
symmetric state of the Maya game. We have also given a description, by means of the 
Maya game, how to obtain weight vectors of weight A Zt 6 for a given weight vector of 
weight A. The weight A is maximal if the corresponding weight vectors is at stalemate 
according to the rule. 

Let us give a more precise description. For A$) the weight vector (ml , . . . , m u )  is a 
maximal weight vector if each mj cannot be moved by 21 + 1 to the left and there are no 
such pairs (mi, m j )  = (k, 21 + 1 - k) for 1 < k 6 1. For D E l ,  (ml, . . . , m z )  is a maximal 
weight vector if there are no mj such that mj = 0 (mod 1 + 1) and there are no pairs 
(mi, mj) such that mi + mj = n(U + 2) for n > 1. In particular, for the case A t )  the 
following set covers the maximal weight vectors: 

By definition the weight A of L(&) of A, (8 or fa is said to be maximal if A + 6 

cPP 

[@,(1,4,7, ..., 3n -2), (2,5,8,. . . ,3n - 1);n > 1). 

For D,Q‘ the maximal weight vectors of degree up to 12 are 

{@. (0, (21, (3), (1,2), (L3L (5). (2.3). 16). (h5). (L2.3). (7). (L6). 
(2.5). (1,2,5), (2,7), (3.6). (1,9), (3.7). (1.3.6). (5.6). (2,10), (5,7). 
(1,2,9),~1,5,6),(2,3,7)}. 

If one uses the language of Young diagrams, the above criterion is stated in simpler words. 

Theorem. Schur’s Q-function Q#) is a maximal weight vector of L(Ao) of A:) (resp. 
D!:J if the shift symmetric diagram t of Y has no hooks of length divisible by 21 + 1 
(resp. 21 + 2). 

In both cases, Ag) and OFl, one recovers the (non-reduced) BKP hierarchy by taking 
the limit 1 --f CO. Hence, as a corollary to the above theorem, we see that the Q-function 
Qy(t) of any strict Young diagram Y solves the BKp hierarchy [9]. 
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